
Statistical Learning Exam 6 January 2016

14:00 – 17:00

• You are allowed to use the book, your private notes and printouts of the handwritten lecture notes
from the course website.

• Every subquestion (1a, 1b, etc.) counts for the same number of points.

• You have to hand in the Appendix. Do not forget to add your name and student number!

1. [Classification] See the data set in Figure 1 in the Appendix.

(a) How many mistakes does 1-nearest neighbour make when we train it on this data and then
evaluate its total number of mistakes in classifying the same data?

(b) How about 15-nearest neighbour?

(c) What is the smallest number of mistakes on this training data that can be achieved by a
linear classifier with an intercept without transforming the features? (That is, set fβ(x) :=
β0 + β1x1 + β2x2 and predict with sign(fβ(x)).) Draw the corresponding decision boundary
in Figure 1a.

(d) What is the smallest number of mistakes that can be achieved without an intercept? (That
is, fβ(x) := β1x1 + β2x2.) Draw the corresponding decision boundary in Figure 1b.

(e) The line in Figure 1c is given by x21 − 8x1 + 4x2 − 8 = 0. How can we transform the features
such that it is possible for a linear classifier on the transformed features, with an intercept,
to make 0 mistakes on this data? Explain your answer.

(f) Which kernel for a support vector machine (SVM) would correspond to this transformation?

2. [Decision Trees and Regression] Suppose we have some regression data set T =

(
y1
x1

)
, . . . ,

(
yN
xN

)
in which each feature vector xi consists of two features.

(a) Using the CART algorithm for regression trees described in Section 9.2.2 of the book, is it
ever possible to end up with a tree that partitions the feature space as in Figure 2a in the
Appendix? How about Figure 2b?

(b) Suppose the second feature was originally measured in meters, but we transform it to be
measured in centimeters. This has the effect of multiplying this feature by 100, while leaving
the other feature unchanged. Let Tbefore be the regression tree produced by CART before
transforming the second feature, and let Tafter be the tree produced after transforming it.
Then are Tbefore and Tafter different in the sense that they produce a different regression
estimate when we apply Tbefore to a new feature vector x and Tafter to the transformed
version of x? Explain your answer.

(c) If you answered “yes” on the previous question, then give an example of a regression method
that does not produce a different regression function when we scale the second feature. If you
answered “no”, then give an example of a regression method that does produce a different
regression function when we scale the second feature.

(d) Suppose we grow a large regression tree T0 on the data T using the CART algorithm without
pruning. To complete the CART algorithm, we then want to prune the tree down to a subtree
Tα ⊆ T0 that minimizes the cost complexity criterion (9.16) in the book. But this criterion
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depends on a tuning parameter α ≥ 0, so we perform 5-fold cross validation by randomly
partitioning T into 5 subsets of (approximately) equal size. For each α from a range of
values α = 0.01, 0.02, . . . , 10.00, we minimize (9.16) over 4 of the subsets and we measure the
prediction error of the resulting tree Tα on the remaining hold-out subset. We then average
the prediction errors over the 5 possible choices of the hold-out subset, and select the α that
predicts best on average. What is wrong with this way of doing cross-validation and what
would be the correct way? (Assume that the chosen range of values for α is appropriate.)

3. [Clustering] Consider clustering with the K-means algorithm.

(a) If we choose the number of clusters K to be between 1 and 10, which value for K do you
expect to give the smallest sum of squared distances

K∑
k=1

∑
i:C(i)=k

‖xi − x̄k‖2 (1)

for the data in Figure 3 after running K-means? Here C(i) is the cluster assigned to data
point xi, and x̄k is the mean of the k-th cluster. NB Don’t forget that the book contains a
mistake in the definition of K-means: K-means aims to minimize (1), not (14.31) from the
book.

Suppose we get classification data with two classes, so now we are in a supervised learning setting
with labeled data (

y1
x1

)
, . . . ,

(
yN
xN

)
.

We want to pre-process our data to add an extra feature as follows: First we cluster the feature
vectors x1, . . . ,xN with K-means for K = 2, which gives us 2 cluster means x̄1 and x̄2. And then,
for any feature vector x, we add an additional feature which is the index of the cluster mean that
is closest to x. So, for example, if x is closer to x̄2 than to x̄1, then we extend x with an extra
feature that has value 2.

(b) Give a probability distribution for (x, y) for which you expect the extra feature to be useful
for classification, and explain your answer. As part of your explanation, draw an approximate
picture of the type of data generated by your probability distribution.

(c) Give a probability distribution for (x, y) for which you do not expect the extra feature to
be useful for classification, and explain your answer. As part of your explanation, draw an
approximate picture of the type of data generated by your probability distribution.

4. [General]

(a) Kaggle.com organizes online machine learning competitions on supervised learning tasks like
classification, regression, etc. For each competition they split their data into three parts: a
train set, which is released to the competitors; a test set which is not released and which is
used to evaluate the submitted methods once the competition has finished; and finally a small
leader board set, which is also not released. While the competition is running, competitors
can make a preliminary submission and then their error on the leader board set is published
on the leader board web page, which thereby acts as a high score list.

When kaggle.com started their competitions, they often observed the following phenomenon:
some competitors would make many preliminary submissions with different settings for a large
number of hyperparameters1. They would then find hyperparameters for which they got a
very small error on the leader board data set, and therefore appear to be much better than
everybody else. But after the competition finished, these competitors performed much worse
on the test data than on the leader board data, and ended up losing to other competitors that
did not make so many preliminary submissions. Please explain what was happening.

1Hyperparameters are, for example, the parameter λ in ridge regression or the Lasso, or the value for K in K-nearest
neighbour.

2



Appendix to the Statistical Learning Exam 6 January 2016

Name:

Student number:
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(a) Smallest nr. of mistakes with intercept
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(b) Smallest nr. of mistakes without intercept
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(c) A line that perfectly separates the two classes
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(d)

Figure 1: Four times the same classification data set for binary classification with two features. For
concreteness, let us say that the ‘+’-symbols have label +1 and the circles have label −1. The exact
location of each symbol is its center. (You can use Figure 1d as a backup in case you make a drawing
mistake in one of the other figures.)
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Figure 2: A feature space with two features, partitioned in two different ways into regions
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Figure 3: Unsupervised data with two features without any labels
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