Statistical Learning	V 29-11-2019
1. Support Vector Machine	(Can create infinitely many features!)
1. Support Vector Machine a) Optimal separating to b) SUM.	ryperplane
b) SVMs	<i>J()</i>
c) Interpretation as penalis	zed ERM with kinge 1085
d) Dual Formulation	<i>U</i>
e) Kernel trick	
f) Perivation of duel fo	rmulation
	11/ 11/20
	Vapnik & Cheruonenkis: foundational
	work on statistical learning
	leading to SVMs raggo.
	Vapnik, 1998: "solve the problem directly
1. SVMs	general problem as an
	Vapnik, 1998: "solve the problem directly and never solve a more general problem as an intermediate step"
a) Optimal separating hyper	
	estimate
generative:	
discriminative	
noω "	decision boundary directly
Assume & Z classes, linea	erli separable
141) /41) /4	(N) 428-1 +13
$(x_1)_1 \cdots (x_n)_n$	N 463-1,+13
Livear	
Model: classifiers that	compute x'p+ po separately
and return its	sign

 $\begin{array}{lll}
x_{i} - x_{i} + x_{i} & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\alpha|$

	max M β, βo, M
	subject to: $y_i(x_i^T\beta + \beta_0) \ge M$ for $i=1,,N$ if $i \in \mathbb{N}$ margin of (x_i^T)
Same de c a constan	ision boundary and margin if we multiply B, Bo by t, so can always choose this constant such that $\ \beta\ = \frac{2}{M}$:
	max M BiBoiM IIBII=M
	5. E. 9: (x : p + po) > M. Upu Vi
	max 1 Bibo libu Solution achieved by
convex -	s.t. y; (x;p+po) > 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
linear inequality constraints	2 s.t. y; (x; β+β0) ≥ I ti
e formation and the first of the following the continuous and the first of the continuous and the continuous	Can solve this optimization problem efficiently!
	NB. We cannot efficiently compute an ERM solution for 0/1-loss in general, but we see here that for separable data this gives a computationally efficient way to find one of the ERM solutions!

b) SVMs	4
What if classes are not linearly separable of Greek RHEV"xi"	
Fig. 12.1, right: introduce slack variable \$; >0 for each	data point
max M β.βo.M, g;	
subject to: $\xi_i \geq 0$, $y_i(x_i^T\beta + \beta_0) \geq M(1 - \xi_i)$	i=1,, N
Ser = t Farameter of alg. L'enough support vectors: all points inside the margin	we take large to have a solution
min Ellfli fifo, Si	
$gaivalent$ $\begin{cases} 5. \pm . & \xi \ge 0, \ y: (x \in \beta + \beta_0) \ge 1 - \xi; \ i = 1,, N \\ \xi \le \xi \le \pm i = 1 \end{cases}$	
Smin $\frac{2}{2} \ \beta\ ^2 + C \cdot \sum_{i=1}^{\infty} \xi_i$ $\beta_i \beta_0, \xi_i$ Faraneter (X)	
s.t. 4:30, y: (x[p+p0] > 1-8; i=1,,N	
.) Interpretation as penalized ERM see	slides 4

L(y;,f(x;)) = max \ \ 0, 1-y; -f(x;) \ is "hinge 1025"

miu Éllpli2 + (29; 4; 20 , 3; 7 1- y; (x[p+p0) i=1,...,N 9: > L(Y; x; B+B0) min \(\(\(\) \(ERM for hinge loss with Lz-penalty, 1= 2. d) Dual Formulation max $\sum_{\alpha_i - \frac{1}{2}} \sum_{\alpha_i = 1}^{N} \sum_{\alpha_i = 1}^{N} \alpha_i \alpha_k y_i y_k \langle x_i, x_k \rangle$ subject to 0 = x; & C and Zx; y; =0 Then solution to (*) is: B = E a: y: x; Exeminiscent of nearest neighbor, because a reminiscent of nearest neighbor, because a reminiscent of fraining data 2. _ outside margin and on right side of decision boundary $0 \le \hat{\mathcal{A}}, \le C$ for x; on margin and on right side of decision boundary 2 = C for Xi inside margin or on wrong side of decision boundary solve \(\hat{\beta}_0 \) \(\frac{1}{50} \) \(\tau_i \) for any ist. Oct; CC

Fig. 2.5: how to learn something like this with linear classifier?

map features x to a larger set of features h(x)! $h\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_1 \cdot x_2 \\ x_2 \\ x_2 \end{pmatrix}$

Then <x: , xx in dual formulation becomes <h(xi), h(xx)?

kernel trick of don't need to specify h, only need to know the kernel function

measure of similarity, really nice if this > K(x; xh) = < h(xi), h(xh)> = larger if xi, xh more were a simple

function... so

turn things around and stort by defining K(x:v.) h(x) may even be infinite-dimensional? K(XiXK)

K(x,x') = (1+ <x,x'>) define polynomial Examples Ling. d=z x CIR2:

K(x,x) = (1+x,x', +x2x')2

= < h(x), h(x")>

 $a(x) = \begin{pmatrix} 1 \\ \sqrt{2} x_1 \\ \sqrt{2} x_2 \\ x_1^{c} \\ \sqrt{2} x_1 x_2 \end{pmatrix}$

radial basise K(x,x') = e-yllx-x'll2

neural network: K(x,x') = tonh(a<x,x'>+b)

fanh(z) = e2-e-2 If K satisfies certain technical conditions (symmetric, , positive definite) then there always exists some mapping h s.t. K(x,x1) = < h(x1, h(x1)). Classifying a new X:

$$\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta}_0 = h(x)^T \sum_{i=1}^{N} \alpha_i y_i h(x_i) + \hat{\beta}_0$$

$$= \sum_{i=1}^{N} \alpha_i y_i \cdot \langle h(x), h(x_i) \rangle + \hat{\beta}_0$$

$$= \sum_{i=1}^{N} \alpha_i y_i \cdot \langle h(x), h(x_i) \rangle + \hat{\beta}_0$$

Again no need to specify h; only need to know kernel.

Fig. 12.3

f.) Derivation of Dual Formulation < optional?

min ± llβll² + C. ξ. ξ; β.β.ς;

5.t. 4:30, y:(x:\beta+\beta)=(1-5;)>0 i=1,..., N

min sup ½ || β||² + C∑ ξ; - Σα; (y; (x; β+β))-(1-ξ;)) - Σρ; ξ; β, βο, Σ; κί, ρ; ξο

(If \$, \$0, \$; violate constraints, then \$; or \$; becomes \$D\$ and \$= \$, \$0 \$, \$0, \$i only achieve minimum while satisfying constraints. And then \$\alpha_i, pi become \$O\$, so the constraints touched drop away and we are minimizing the previous objective.)

V_BA = 0 = B = Z x; y; x; V_BA=0 > Z x; y; =0

74. A=0 >> p; - C-α;

flugging

wir sup A = sup win A by convex aprimization

Pipolizi di pizo di pizo Bipolizi theory (Slater's condition)

Can solve this

$$\nabla_{\beta}A=0 \Rightarrow \beta=\sum_{i=1}^{N}\alpha_{i}y_{i}x_{i}$$

$$\nabla_{\beta}A=0 \Rightarrow \sum_{i=1}^{N}\alpha_{i}y_{i}=0$$

Plugging these in gives dual formulation.