| Statistical Learning | V 29-11-2019 | |--|--| | 1. Support Vector Machine | (Can create infinitely many features!) | | 1. Support Vector Machine a) Optimal separating to b) SUM. | ryperplane | | b) SVMs | <i>J()</i> | | c) Interpretation as penalis | zed ERM with kinge 1085 | | d) Dual Formulation | <i>U</i> | | e) Kernel trick | | | f) Perivation of duel fo | rmulation | | | 11/ 11/20 | | | Vapnik & Cheruonenkis: foundational | | | work on statistical learning | | | leading to SVMs raggo. | | | Vapnik, 1998: "solve the problem directly | | 1. SVMs | general problem as an | | | Vapnik, 1998: "solve the problem directly
and never solve a more
general problem as an
intermediate step" | | a) Optimal separating hyper | | | | | | | estimate | | generative: | | | discriminative | | | noω " | decision boundary directly | | Assume & Z classes, linea | erli separable | | 141) /41) /4 | (N) 428-1 +13 | | $(x_1)_1 \cdots (x_n)_n$ | N 463-1,+13 | | Livear | | | Model: classifiers that | compute x'p+ po separately | | and return its | sign | | | | | | | $\begin{array}{lll} x_{i} - x_{i} + x_{i} & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\beta|| & ||\alpha|| & ||\alpha|| & ||\beta|| & ||\alpha|| ||\alpha|$ | | max M
β, βo, M | |--|---| | | subject to: $y_i(x_i^T\beta + \beta_0) \ge M$ for $i=1,,N$ if $i \in \mathbb{N}$ margin of (x_i^T) | | Same de c
a constan | ision boundary and margin if we multiply B, Bo by t, so can always choose this constant such that $\ \beta\ = \frac{2}{M}$: | | | max M
BiBoiM
IIBII=M | | | 5. E. 9: (x : p + po) > M. Upu Vi | | | max 1 Bibo libu Solution achieved by | | convex - | s.t. y; (x;p+po) > 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | linear inequality constraints | 2 s.t. y; (x; β+β0) ≥ I ti | | e formation and the first of the following the continuous and the first of the continuous and | Can solve this optimization problem efficiently! | | | NB. We cannot efficiently compute an ERM solution for 0/1-loss in general, but we see here that for separable data this gives a computationally efficient way to find one of the ERM solutions! | | b) SVMs | 4 | |--|--| | What if classes are not linearly separable of Greek RHEV"xi" | | | Fig. 12.1, right: introduce slack variable \$; >0 for each | data point | | max M
β.βo.M, g; | | | subject to: $\xi_i \geq 0$, $y_i(x_i^T\beta + \beta_0) \geq M(1 - \xi_i)$ | i=1,, N | | Ser = t Farameter of alg. L'enough support vectors: all points inside the margin | we take large
to have a
solution | | min Ellfli
fifo, Si | | | $gaivalent$ $\begin{cases} 5. \pm . & \xi \ge 0, \ y: (x \in \beta + \beta_0) \ge 1 - \xi; \ i = 1,, N \\ \xi \le \xi \le \pm i = 1 \end{cases}$ | | | Smin $\frac{2}{2} \ \beta\ ^2 + C \cdot \sum_{i=1}^{\infty} \xi_i$
$\beta_i \beta_0, \xi_i$ Faraneter (X) | | | s.t. 4:30, y: (x[p+p0] > 1-8; i=1,,N | | | .) Interpretation as penalized ERM see | slides 4 | L(y;,f(x;)) = max \ \ 0, 1-y; -f(x;) \ is "hinge 1025" miu Éllpli2 + (29; 4; 20 , 3; 7 1- y; (x[p+p0) i=1,...,N 9: > L(Y; x; B+B0) min \(\(\(\) \(ERM for hinge loss with Lz-penalty, 1= 2. d) Dual Formulation max $\sum_{\alpha_i - \frac{1}{2}} \sum_{\alpha_i = 1}^{N} \sum_{\alpha_i = 1}^{N} \alpha_i \alpha_k y_i y_k \langle x_i, x_k \rangle$ subject to 0 = x; & C and Zx; y; =0 Then solution to (*) is: B = E a: y: x; Exeminiscent of nearest neighbor, because a reminiscent of nearest neighbor, because a reminiscent of fraining data 2. _ outside margin and on right side of decision boundary $0 \le \hat{\mathcal{A}}, \le C$ for x; on margin and on right side of decision boundary 2 = C for Xi inside margin or on wrong side of decision boundary solve \(\hat{\beta}_0 \) \(\frac{1}{50} \) \(\tau_i for any ist. Oct; CC Fig. 2.5: how to learn something like this with linear classifier? map features x to a larger set of features h(x)! $h\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_1 \cdot x_2 \\ x_2 \\ x_2 \end{pmatrix}$ Then <x: , xx in dual formulation becomes <h(xi), h(xx)? kernel trick of don't need to specify h, only need to know the kernel function measure of similarity, really nice if this > K(x; xh) = < h(xi), h(xh)> = larger if xi, xh more were a simple function... so turn things around and stort by defining K(x:v.) h(x) may even be infinite-dimensional? K(XiXK) K(x,x') = (1+ <x,x'>) define polynomial Examples Ling. d=z x CIR2: K(x,x) = (1+x,x', +x2x')2 = < h(x), h(x")> $a(x) = \begin{pmatrix} 1 \\ \sqrt{2} x_1 \\ \sqrt{2} x_2 \\ x_1^{c} \\ \sqrt{2} x_1 x_2 \end{pmatrix}$ radial basise K(x,x') = e-yllx-x'll2 neural network: K(x,x') = tonh(a<x,x'>+b) fanh(z) = e2-e-2 If K satisfies certain technical conditions (symmetric, , positive definite) then there always exists some mapping h s.t. K(x,x1) = < h(x1, h(x1)). Classifying a new X: $$\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta}_0 = h(x)^T \sum_{i=1}^{N} \alpha_i y_i h(x_i) + \hat{\beta}_0$$ $$= \sum_{i=1}^{N} \alpha_i y_i \cdot \langle h(x), h(x_i) \rangle + \hat{\beta}_0$$ $$= \sum_{i=1}^{N} \alpha_i y_i \cdot \langle h(x), h(x_i) \rangle + \hat{\beta}_0$$ Again no need to specify h; only need to know kernel. Fig. 12.3 f.) Derivation of Dual Formulation < optional? min ± llβll² + C. ξ. ξ; β.β.ς; 5.t. 4:30, y:(x:\beta+\beta)=(1-5;)>0 i=1,..., N min sup ½ || β||² + C∑ ξ; - Σα; (y; (x; β+β))-(1-ξ;)) - Σρ; ξ; β, βο, Σ; κί, ρ; ξο (If \$, \$0, \$; violate constraints, then \$; or \$; becomes \$D\$ and \$= \$, \$0 \$, \$0, \$i only achieve minimum while satisfying constraints. And then \$\alpha_i, pi become \$O\$, so the constraints touched drop away and we are minimizing the previous objective.) V_BA = 0 = B = Z x; y; x; V_BA=0 > Z x; y; =0 74. A=0 >> p; - C-α; flugging wir sup A = sup win A by convex aprimization Pipolizi di pizo di pizo Bipolizi theory (Slater's condition) Can solve this $$\nabla_{\beta}A=0 \Rightarrow \beta=\sum_{i=1}^{N}\alpha_{i}y_{i}x_{i}$$ $$\nabla_{\beta}A=0 \Rightarrow \sum_{i=1}^{N}\alpha_{i}y_{i}=0$$ Plugging these in gives dual formulation.